APHANORPHINE, A NOVEL TRICYCLIC ALKALOID FROM THE BLUE-GREEN ALGA APHANIZOMENON FLOS-AQUAE Nanda Gulavita, Akira Hori, and Yuzuru Shimizu* Department of Pharmacognosy and Environmental Health Sciences, The University of Rhode Island, Kingston, RI 02881, USA

Parkanyi Laszlo¹, and Jon Clardy*

Department of Chemistry, Baker Laboratory, Cornell University, Ithaca, New York 14853-1301 USA

Abstract: An alkaloid with a benzazepine skeleton, aphanorphine (1) was isolated from the bluegreen alga, Aphanizomenon flos-aquae together with its previously known constituents neosaxitoxin and saxitoxin.

A strain of the freshwater blue-green alga (cyanobacterium), Aphanizomenon flos-aquae, was reported to contain neurotoxins by Jackim and Gentile.² Further studies on these toxins by Alam³ et al. confirmed the presence of saxitoxin and a mixture of three other toxins as toxic constituents. Neosaxitoxin, which was isolated from the dinoflagellate Gonyaulax tamarensis and characterized by Shimizu and coworkers,⁴ was also reported from A. flos-aquae strains NH-1 and -55,6,7. Another basic compound (named aphanorphine), which shows a blue-fluoresent spot on TLC upon 1% H_2O_2 spraying followed by heating, was isolated during the biosynthetic studies of neosaxitoxin in this alga.^{6,8} In this paper we wish to report the isolation and structure elucidation of aphanorphine.

Cultured cells of A. flos-aquae^{6,9} were extracted with aqueous AcOH, concentrated, and the extract was washed with CH₂Cl₂ to remove lipophillic substances. The aqueous layer was concentrated, and dialyzed against 0.08N AcOH. The aqueous solution was concentrated and chromatographed on BioGel P-2, and the toxin fraction was repeatedly chromatographed on Bio Rex-70 weak ion-exchange resin. Aphanorphine, which is non-toxic to mice at 25 mg/kg (IP), was eluted after saxitoxin and neosaxitoxin bands (0.04% yield from dry weight). Further purificatin was carried out on Chelex-100 to remove chelated metal ion impurities. The free base was obtained by basification of aphanorphine hydrochloride solution with Na₂CO₃ and extraction with CH₂Cl₂.

Aphanorphine (1), was crystallized from acetone to prisms, mp. 223-229°C, $[\alpha]_D^{25}$ -43.7° (c 0.47, HCl salt in H₂O). The EI high resolution mass spectrum of aphanorphine hydrochloride gave a molecular ion at m/z 203.1312 which matched the molecular formula of $C_{13}H_{17}NO$ (calcd m/z 203.1311). The EI low resolution mass spectrum showed major fragments: m/z 188 (M⁺-Me), 160

4381

Figure 1. Selected observed NOEs and the two equilibrium forms of 1

Figure 2. A computer generated perspective drawing of the final X-ray model of 1

(M+-C₂H₅N) and 145 (M+-C₃H₈N). The IR (KBr) absorption bands v_{max} 3413 and 1613 cm⁻¹ were indicative of the presence of an OH group and an aromatic ring system. Acetylation of 1 with Ac₂O/pyridine gave a monoacetate 2; C₁₅H₁₉NO₂, (calcd. *m/z* 245.1417; observd. *m/z* 245.1411); ¹H NMR (in D₂O) & 2.26 (3H, phenol acetate). The presence of a phenolic moiety in 1 was further confirmed by its UV spectrum; λ_{max} (HCl salt in H₂O) 225 nm(ε 4700) and 278(ε 1600). The ¹H NMR spectrum of 1 (HCl salt in D₂O) showed the presence of a deshielded tertiary methyl group at δ 1.40 (3H, s); an N-Me group at δ 2.84 (3H,s); three methylene groups at δ 1.98 (1H, dd, *J*=1.1,12.7 Hz), and δ 2.27 (1H, dd, *J*=6.18,12.7 Hz); δ 3.05 (2H, br s); δ 3.56 (1H, dd, *J*=1.1,11.4 Hz) and δ 2.89 (1H, d, *J*=11.4 Hz); and a methine proton at δ 4.05; three aromatic protons at δ 6.56 (1H, dd, *J*=2.5,8.3 Hz), δ 6.69 (1H, d, *J*=2.5 Hz) and δ 6.95 (1H, d, *J*=8.3 Hz). The assignment was also supported by ¹³C NMR and DEPT spectra (HCl salt in D₂O) which showed aromatic carbons at δ 110.4 (C-7), 114.8 (C-9), 121.6 (C-5a), 130.6 (C-6), 143.4 (C-9a), 154.2 (C-8) confirming a trisubstituted aromatic ring system; a quaternery carbon at δ 42.9 (C-1); a methyl at δ 18.5 and an N-Me at δ 42.8; two methylenes at δ 34.1 (C-10) and 38.3 (C-5) and a hetero atom bearing methylene at δ 70.6 (C-2), and a hetero atom bearing methine at δ 67.4 (C-4).

The carbon connectivity was established by decoupling studies; irradiation at δ 4.05 gave a doublet at δ 2.27 (J=12.7 Hz) and sharpened the broad methylene singlet at δ 3.05; irradiation of δ 3.05 changed the multiplet at δ 4.05 to a doublet (J=6 Hz), and sharpened the signal at δ 6.95 indicating that methylene at δ 3.05 was long range coupled with the aromatic proton at δ 6.95; irradiation of the signal at δ 2.27 collapsed the signal at δ 1.98 and δ 4.05 to broad singlets. Furthermore the proton at δ 3.56 showed W coupling (J=1.1 Hz) with the proton at δ 1.98. The aromatic ring was 1,2,4trisubstituted as shown in the coupling pattern. From these data, we arrived at the structure 1 for aphanorphine. The difference NOE spectrum of 1 showed NOEs as given in figure 1., which are also in good agreement with the structure 1.

The ¹H and ¹³C NMR spectra of 1 in strongly acidic solutions showed two sets of signals (*ca* 6:1), which collapsed to a set of averaged signals in higher pH (\sim pH 4).¹⁰ A distinct difference was seen in the chemical shifts of N-Me groups; the signal of the dominant compound was more deshielded (δ 2.84) than that of the other isomer (δ 2.65). The above observation suggests that in low pH, 1 exists in two "fixed" conformations, which is probably due to the difference of N-Me orientation (Figure 1.). To determine its orientation and also to confirm the structure unequivocally, a single crystal X-ray diffraction studies of 1 was carried out.

Crystals of aphanorphine formed in space group C2 with a=15.630(5), b=8.290(2), c=11.450(4), and $\beta=131.06(2)^{\circ}$ and one molecule of composition $C_{13}H_{17}NO$ forming the asymmetric unit (Z=4). All unique diffraction maxima with $2\theta \le 114^{\circ}$ were collected using θ -2 θ scans and graphite monochromated CuKa radiation (1.5418 Å). A total of 820 unique reflections were collected, and 816 were judged observed ($|F_0| \ge 3\sigma(F_0)$). A phasing model was found using the SHELXTL series of programs. Full-

matrix least-squares refinements with anisotropic nonhydrogen atoms and isotropic hydrogens have converged to a standard crystallographic residual of 0.041 for the observed data.¹¹ A computer generated perspective drawing of the final X-ray model is given in Figure 2. The amino nitrogen, N-3, is pyramidalized to orient the methyl group, C-12, towards the aromatic ring and away from the methylene group C-10. There is an intermolecular hydrogen bond in the crystal from N-3...HO [1/2+x, -1/2+y, z].

These results confirm that 8-hydroxy-1,3-dimethyl-2,3,4,5-tetrahydro-1,4-methano-3-benzazepine is the structure of 1. The N-Me of the dominant solution structure is also facing towards the aromatic ring (*endo*) as evidenced by the observed ring current effect on its chemical shift. Interestingly the desmethyl derivative of 1 and other similar ring systems have been synthersized as morphine analogs (3a-c) and found to be moderately analgesic.^{12,13} We are currently studying the absolute stereochemistry of 1 and its biological activity.

Acknowledgements: NIH (Grant CA24487) and New York State Sea grant are gratefully acknowledged for the financial support rendered for this work.

References

- 1. On leave from Central Chemical Research Institute, Budapest, Hungary.
- 2. Jackim, E.; Gentile, J.H. Science 1968, 162, 915.
- 3. Alam, M.; Shimizu, Y.; Ikawa, M.; Sasner, J.J.Jr. J. Envir. Sci. Hlth. 1978, A13, 493.
- 4. Shimizu, Y.; Hsu, C.; Fallon, W.E.; Miura, I.; Nakanishi, K. J.Am. Chem. Soc. 1978, 100, 6791.
- 5. Ikawa, M.; Wegener, K.; Foxall, T.L.; Sasner, J.J.Jr. Toxicon 1982, 20, 747.
- 6. Shimizu, Y.; Norte, M.; Hori, A.; Genenah, A.; Kobayashi, M. J.Am.Chem.Soc. 1984, 106, 6433.
- 7. Mahmood, N.A.; Carmichael, W.W. Toxicon 1986, 24, 175.
- 8. Unpublished data.
- 9. The non-unialgal sample provided by Dr. Ikawa was purified to unialgal by us. According to Dr. Carmichael, it may be identical with NH-1 (private communication).
- Michinori Oki "Applications of Dynamic NMR Spectroscopy to Organic Chemistry"; Marchand A.P. Ed.; VCH Publishers, Inc., 1985, Vol 4, Chapter 8.
- Archival X-ray crystallographic data have been deposited with anc can be ordered from the Cambridge Crystallographic Data Center, University Chemical Laboratory, Lensfield Road, Cambridge, CB2 1EW, U.K. Please give a complete literature citation when ordering.
- 12. Mitsuhashi, K.; Shiotani, S.; Oh-Uchi, R.; Shiraki, K. Chem. Pharm. Bull. 1969, 17, 434.
- 13. Komitani, T.; Shiotani, S. J. Med. Chem 1978, 21, 1105.

(Received in USA 25 May 1988)